N-acetylaspartate supports the energetic demands of developmental myelination via oligodendroglial aspartoacylase

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GLUT4 Mobilization Supports Energetic Demands of Active Synapses

The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a g...

متن کامل

Oligodendroglial myelination requires astrocyte-derived lipids

In the vertebrate nervous system, myelination of axons for rapid impulse propagation requires the synthesis of large amounts of lipids and proteins by oligodendrocytes and Schwann cells. Myelin membranes are thought to be cell-autonomously assembled by these axon-associated glial cells. Here, we report the surprising finding that in normal brain development, a substantial fraction of the lipids...

متن کامل

the effect of e-64 on the developmental competence of sheep cocs during in vitro maturation

in the present study, the effect of e-64 at different concentrations (0.5, 1, 5 and 10 µm) added to (1) the ivm medium on oocyte nuclear maturation and developmental competence of ovine oocytes, and (2) to the ivc medium on embryonic development of ovine embryos were investigated.

AGC1 Deficiency Causes Infantile Epilepsy, Abnormal Myelination, and Reduced N-Acetylaspartate.

BACKGROUND Whole exome sequencing (WES) offers a powerful diagnostic tool to rapidly and efficiently sequence all coding genes in individuals presenting for consideration of phenotypically and genetically heterogeneous disorders such as suspected mitochondrial disease. Here, we report results of WES and functional validation in a consanguineous Indian kindred where two siblings presented with p...

متن کامل

Increasing N-acetylaspartate in the Brain during Postnatal Myelination Does Not Cause the CNS Pathologies of Canavan Disease

Canavan disease is caused by mutations in the gene encoding aspartoacylase (ASPA), a deacetylase that catabolizes N-acetylaspartate (NAA). The precise involvement of elevated NAA in the pathogenesis of Canavan disease is an ongoing debate. In the present study, we tested the effects of elevated NAA in the brain during postnatal development. Mice were administered high doses of the hydrophobic m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurobiology of Disease

سال: 2016

ISSN: 0969-9961

DOI: 10.1016/j.nbd.2016.10.001